
MLE and Binary Dependent Variables 
 
 

1 

Maximum Likelihood Estimation and Binary Dependent Variables 
 
1.  Starting with a Simple Example:  Bernoulli Trials 
Lets start with a simple example:   

Teams A and B play one another 10 times; A wins 4 of the games.  The games are played  
under similar circumstances, and the outcomes of each game are independent.  You are 
interested in estimating the (unknown) probability, p, that A wins a game.   

You don’t know the value of p, but you do know that whatever it is, it is in some sense 
consistent with the outcomes you observe.  So the challenge is to use the outcomes 
information to come up with your best estimate of the value of p that is behind all this. 

Here’s the data: 

 

Game Outcome  
for A 

Prob of that outcome: 
likelihood 

lnlikelihood 

1 Win p ln(p) 

2 Loss 1-p ln(1-p) 

3 Loss 1-p ln(1-p) 

4 Loss 1-p ln(1-p) 

5 Win p ln(p) 

6 Win p ln(p) 

7 Loss 1-p ln(1-p) 

8 Loss 1-p ln(1-p) 

9 Win p ln(p) 

10 Loss 1-p ln(1-p) 

  Prob Outcomes: Sum of lnlikelihoods: 

  4 6(1 )p p−  4 ln( ) 6ln(1 )p p+ −  
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Since the outcomes of the games are independent in the probabilistic sense, the 
probability of seeing this particular sequence of wins and losses for A is: 

4 6(1 )(1 )(1 ) (1 )(1 ) (1 ) (1 )p p p p pp p p p p p p− − − − − − = − . 

This is the likelihood of observing the sequence of wins and losses, conditional on the 
unknown parameter p.   

With Maximum Likelihood Estimation (MLE) we estimate p by answering the question:  
Which parameter value p generates the greatest likelihood of the observed outcomes…  
or more formally:   

4 6 *max ( ) max (1 )p plikelihood p p p p≡ − → . 

To solve for *p , it is usually easier to first take the ln(.) of the likelihood.  Since the ln(.) 
function is strictly increasing if *p  maximizes the likelihood, it will also maximize the 
lnlikelihood.  So we can restate the problem: 

[ ] 4 6 *max ln ( ) max ln (1 ) max 4ln( ) 6 ln(1 )p p plikelihood p p p p p p⎡ ⎤≡ − = + − →⎣ ⎦ . 

We can use the First Order Condition (FOC) to solve for *p : 

FOC:  *
* *

4 6 40 .40 %
101

p wins
p p

− = ↔ = = =
−

 

The Second Order Condition is satisfied since: 

SOC:  [ ]
( )

2

2 2 2

4 6ln ( ) 0 0
1

d likelihood p for p
dp p p

= − − < >
−

. 

So we have:  A’s %wins is an MLE of the probability that A will beat B. 

%Wins as an MLE 

More generally:  Suppose that teams A and B play one another n times; A wins k of the 
games.  (Unlike the above, you don’t know the sequence of wins and losses, you just 
know that there were k wins in n games.).   

As above, the games are played  under similar circumstances, and the outcomes of each 
game are independent.  And you want to estimate the probability, p, that A wins a game. 

Since each game has two outcomes, A wins (with probability p) or B wins, with 
probability 1-p, the probability that A wins k out of n games is given by the Binomial 
distribution: 

( ) (1 )k n kn
P k wins in n games p p

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

This is also the likelihood that A wins k out of n games, and so the likelihood function is: 

( , | ) (1 )k n kn
L k n p p p

k
−⎛ ⎞

== −⎜ ⎟
⎝ ⎠

. 
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As discussed above. with Maximum Likelihood Estimation (MLE), the goal is to find the 
value of the parameter value p that makes most likely what was observed, namely k wins 
in n games.  And so the MLE estimate of p, *p , will be defined by: 

*max ( , | )p L k n p p→ . 

To solve this optimization problem, first take ln(.)’s as above and then use first and 
second order conditions (FOC and SOC) to find the *p  that maximizes the lnlikelihood: 

[ ]max ln ( , | ) max ln ln( ) ( ) ln(1 )
n

L k n p k p n k p
k

⎡ ⎤⎛ ⎞
= + + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
. 

*
* *: 0 %

(1 )
k n k kFOC p wins

np p
−

− = → = =
−

 

( )2 * 2*
: 0

(1 )
k n kSOC

pp

−
− − < →

−
 maximum (since SOC is everywhere < 0) 

We have the same result as above, that the win percent is an MLE estimator of p, the 
probability of a win. 

 

2. MLE More Generally 
Suppose that 

1 2 1 2( , , , | , , , )n kL y y y β β β… …  

 is the probability (or likelihood) of observing the outcomes { }iy … given parameters 

{ }jβ .  As the betas change, the likelihood of getting the outcomes that actually occurred 
will change.  The MLE estimates of those unknown parameters will be the set of 
parameter values that would have with the greatest probability predicted the sample 
outcomes that were actually observed …  so the estimation problem is: 

{ } { } { } { }*max |
j

i j jL y
β

β β⎡ ⎤ →⎣ ⎦ . 

Typically, it is convenient to take the ln of the likelihood function to solve the 
optimization problem… since whatever maximizes L() will also maximize lnL(): 

{ } { } { }{ } { }*max ln |
j

i j jL y
β

β β⎡ ⎤ →⎣ ⎦ . 

In this case, the maximand is the called the lnlikelihood (or log-likelihood) function.  
Since the overall likelihood function is often the product of a number of individual 
likelihood functions (as, say, in the case of independent observations), by taking ln’s, we 
convert a messy multiplicative function into a much easier to evaluate additive function.  
And so standard practice is in fact to take ln’s and maximize lnlikelihoods. 
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3. SLR Models and Maximum Likelihood Estimation 
Consider the standard Simple Linear Regression (SLR) model: 

 

SLR:  0 1i i iY x Uβ β= + +   
Since 2(0, )iU N σ∼ , conditional on ix , we have 2

0 1| ( , )i i iY x N xβ β σ+∼  

 

The conditional density function for iY  is defined by:  

2
0 1 0 12

1 1( | , , ) exp ( )
22i i i if y x y xβ β β β
σσ π
−⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 

And so the Likelihood function is:   

{ } { }( )0 1 0 1| , , ( | , , )i i i iL y x f y xβ β β β=∏  2
0 12

1 1exp ( )
22 i iy xβ β
σσ π
−⎛ ⎞= − −⎜ ⎟

⎝ ⎠
∏  

and Log Likelihood:  ( ) 2
0 12

1 1ln (.) ln ( )
22 i iL n y xβ β
σσ π

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑  

Since 1ln
2

n
σ π
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is independent of the parameters to be estimated, 0 1andβ β , and 

since 2

1
2σ

−  is a negative scalar,  

 

{ }0 1 0 1

2 2
, 0 1 , 0 12

1 1max ln ( ) min ( )
22 i i i in y x y xβ β β ββ β β β
σσ π

⎧ ⎫⎛ ⎞
− − − ⇔ − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ∑  

 

Note that to maximize the lnlikelihood expression is to minimize 
2

0 1( )i iSSR y xβ β= − −∑ .   

So the MLE estimates of 0 1 0 1
ˆ ˆ( )and andβ β β β  will also be the parameter values that 

minimize SSRs.  Or put differently:  For the standard SLR model, the OLS estimates and 
the MLE estimates of the intercept and slope are one and the same. 
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4. An Example:  Predicting NFL Game Winners 
 

In this example, we’ll build some models that predict NFL game winners as a function of 
various game stats, including rushing yards, passing yards, and time of possession. 

The data come from Warren Repole’s website, www.repole.com, and cover every regular 
season NFL game from 2002 through the 2013 season.  Here are the summary stats for 
the numeric variables in the dataset (the Home team is “off” and the Visitors are “def”):  
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
      season |      3081    2007.509    3.452648       2002       2013 
    scoreoff |      3081    23.04122    10.34521          0         62 
firstdownoff |      3076    19.36671    4.933257          3         40 
  rushattoff |      3076    28.25683    7.965681          7         60 
-------------+-------------------------------------------------------- 
  rushydsoff |      3076    119.5966    52.61298         -3        378 
  passattoff |      3076    32.99675    8.418214          9         65 
 passcompoff |      3076    20.06762    5.941666          5         43 
  passydsoff |      3076    226.3495    75.88289         22        510 
  passintoff |      3076    .9518856    1.029465          0          6 
-------------+-------------------------------------------------------- 
  fumblesoff |      3076    .6862809    .8268386         -1          4 
  sacknumoff |      1289    2.252133    1.669757         -1         11 
  sackydsoff |      3076    13.95026    11.96639        -13         71 
   penydsoff |      3076    50.39792    25.40716          0        175 
-------------+-------------------------------------------------------- 
  puntavgoff |      3069    43.25506    6.131968          0         69 
    scoredef |      3081    20.42486    10.23999          0         59 
firstdowndef |      3076    18.41255    5.060527          3         37 
-------------+-------------------------------------------------------- 
  rushattdef |      3076    26.96912    8.023747          6         57 
  rushydsdef |      3076     110.975    51.63911        -18        351 
  passattdef |      3076    33.48505    8.583257          6         67 
 passcompdef |      3076    20.01918    6.156492          1         43 
  passydsdef |      3076    222.0878    78.37646         -7        516 
-------------+-------------------------------------------------------- 
  passintdef |      3076    1.044213    1.065648          0          6 
  fumblesdef |      3076    .6989597    .8445399          0          5 
  sacknumdef |      1289    2.349884    1.717919         -1         10 
  sackydsdef |      3076    15.06762    12.55878         -7         79 
   penydsdef |      3076     53.3407    26.62058          0        177 
-------------+-------------------------------------------------------- 
        line |      3081    2.457157    6.004107      -18.5       26.5 
   totalline |      3081    42.48588    4.754155         30         60 
 

For each game, and for both teams, we have the following data:  game date, teams, final 
score, 1st down yardage, 3rd down conversion rates, rushing and passing attempts and 
yards, interceptions, fumbles, sacks and sack yards, penalty yards, average punt yards, 
and time of possession.  In addition, we have venue information and point spreads and 
total (OU) lines.   

Let’s start by predicting the probability of a home team victory as a function of the 
difference in total rushing and passing yards:  netyds = netrush + netpass, where netrush 
= HomeRushYds – VisRushYds = rushydsoff – rushydsdef, and likewise for netpass. 
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Take I:  OLS - Linear Probability Models 
The first estimated model is a standard Linear Probability Model… named because the 
estimated probabilities are linear in the explanatory variables: 
 
. reg hwins netyds 
 
      Source |       SS       df       MS              Number of obs =    3076 
-------------+------------------------------           F(  1,  3074) =  540.19 
       Model |  112.367696     1  112.367696           Prob > F      =  0.0000 
    Residual |  639.434644  3074  .208013873           R-squared     =  0.1495 
-------------+------------------------------           Adj R-squared =  0.1492 
       Total |  751.802341  3075  .244488566           Root MSE      =  .45609 
 
------------------------------------------------------------------------------ 
       hwins |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      netyds |   .0015947   .0000686    23.24   0.000     .0014602    .0017292 
       _cons |   .5542275   .0082708    67.01   0.000     .5380106    .5704443 
 

netyds is highly statistically significant.  The models estimates that on average, and 
controlling for nothing other than home field advantage, an increase in net yards of 100 
increases the chance of a victory by 16% points. An attractive feature of the LPM is that 
you can read the estimated effects right off of the regression output. 
 

Here are the predicted values from the model: 
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Right away you can see a problem.  Some of the probabilities are below zero while others 
are well above 1.  That’s a problem. 

One way around this problem is to introduce second and third order terms: 
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. reg hwins netyds* 
 
      Source |       SS       df       MS              Number of obs =    3076 
-------------+------------------------------           F(  3,  3072) =  185.05 
       Model |  115.068208     3  38.3560694           Prob > F      =  0.0000 
    Residual |  636.734132  3072  .207270225           R-squared     =  0.1531 
-------------+------------------------------           Adj R-squared =  0.1522 
       Total |  751.802341  3075  .244488566           Root MSE      =  .45527 
 
------------------------------------------------------------------------------ 
       hwins |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      netyds |    .001887   .0001073    17.59   0.000     .0016767    .0020974 
     netyds2 |  -4.44e-08   4.24e-07    -0.10   0.917    -8.75e-07    7.87e-07 
     netyds3 |  -6.35e-09   1.91e-09    -3.33   0.001    -1.01e-08   -2.61e-09 
       _cons |   .5560969    .010094    55.09   0.000     .5363053    .5758885 
------------------------------------------------------------------------------ 
 

Here are the predicted values from the two models: 
 

0
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netyds

Fitted values Fitted values

 
 

While the predicted probabilities are no longer outside the [0,1] interval, we now have a 
new issue:  in the tails of the distribution, the predicted probabilities move counter to 
what is expected (increases in net yardage predict decreases in win probabilities). 
 
Notice, however, that for the overwhelming majority of the observations, the predicted 
win probabilities for the two models are virtually the same. 
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Take II:  MLE - Logit 

The logit model is based on the logistic function which is defined by 1( )
1 xf x

e−=
+

 and 

graphed below:1 

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

 
 

It is a symmetric function ( ( ) 1 ( )f x f x− = − ), bounded below by zero, increasing 
everywhere, and bounded above by one. In the logit specification, 

 

0 1( )

1( | )
1 netydsP Hwins netyds

e β β− +=
+

. 

 

Since 
0 1( )

1( | ) 1 ( | ) 1
1 netydsP Hloses netyds P Hwins netyds

e β β− += − = −
+

 
0 1

0 1

( )

( )1

netyds

netyds

e
e

β β

β β

− +

− +=
+

 , 

the ratio of the two probabilities is: 

 

0 1( )( | )
( | )

netydsP Hwins netydsOddsRatio e
P Hloses netyds

β β+= = .  

 

And so [ ] 0 1ln OddsRatio netydsβ β= + … linear in the explanatory variable! 

                                                 
1 The logistic and logit functions are inverses of one another.  The logit function is defined by:  

1logit( ) ln( 1)p
p

= − − . 
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And so one way to think about the Logit Model is that it assumes that the lnOddsRatio is 
linear in the RHS variables… and in that way, the model looks a bit like the LPM. 

To illustrate how MLE/logit estimation works, suppose that the Home team wins the first 
game, loses the second and wins the third, and that these results are independent, so that 
the probability of the three occurring is just the product of the probabilities of each one 
happening.  Then the likelihood of these three outcomes (conditional on the different 
netyds) is: 

 

1 1 2 2 3 3( | ) * ( | ) * ( | )P Hwins netyds P Hloses netyds P Hwins netyds , or 

 

( )
0 1 2

0 1 1 0 1 2 0 1 3

( )

1 2 3 0 1 ( ) ( ) ( )

1 1, , | ,
1 1 1

netyds

netyds netyds netyds

eL Hwins Hloses Hwins
e e e

β β

β β β β β ββ β
− +

− + − + − +=
+ + +

. 

 

The MLE method will estimate the coefficient values by maximizing this expression with 
respect to 0 1&β β .  If we take the ln( ) of this expression, and use the fact that ln(1)=0, 
we get the log-likelihood function 

 
0 1 1 0 1 2 0 1 3( ) ( ) ( )

0 1 2ln(1 ) ( ) ln(1 ) ln(1 )netyds netyds netydse netyds e eβ β β β β ββ β− + − + − +− + − + − + − +  

 

which is much easier to evaluate 
 
. logit hwins netyds 
 
Iteration 0:   log likelihood =  -2097.596   
Iteration 1:   log likelihood = -1848.0407   
Iteration 2:   log likelihood =  -1846.376   
Iteration 3:   log likelihood = -1846.3746   
Iteration 4:   log likelihood = -1846.3746   
 
Logistic regression                               Number of obs   =       3076 
                                                  LR chi2(1)      =     502.44 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1846.3746                       Pseudo R2       =     0.1198 
 
------------------------------------------------------------------------------ 
       hwins |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      netyds |   .0078005   .0003924    19.88   0.000     .0070313    .0085697 
       _cons |   .2618768   .0396232     6.61   0.000     .1842168    .3395369 
------------------------------------------------------------------------------- 

 

Given these parameter estimates, the predicted probability that the home team wins is: 
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0.2619 .0078 )

1( | )
1 netydsP Hwins netyds

e− −=
+

….   

the predicted values are plotted below: 

In contrast to the LPM, it is difficult to read marginal effects directly from the estimated 
logit coefficients.  However, the signs of the logit coefficients are interpretable:  if the 
netyds coefficient is positive (as it is above), then increases in netyds will lead to 
increases in the predicted probability of wins… and had the coefficient been negative, 
then the direction of the effect would have been negative as well. 

More formally:  Since ( ) 1

0
ˆ ˆˆ 1 exp ( )i ip xβ β

−
⎡ ⎤= + − +⎣ ⎦∑ , 

2
0

ˆ ˆ ˆ ˆ ˆexp ( )i i i
i

p x p
x

β β β∂ ⎡ ⎤= − +⎣ ⎦∂ ∑ , and since 0
ˆ ˆxp ( ) 0i ie xβ β⎡ ⎤− + >⎣ ⎦∑  and 2ˆ 0p > , 

{ }ˆ
î

i

psign sign
x

β
⎧ ⎫∂

=⎨ ⎬∂⎩ ⎭
. 

So the signs of the logit coefficients tell you direction of effects, but coefficients need to 
be processed before the magnitudes of the effects can be determined. 

 

0
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Fitted values Fitted values
Pr(hwins)

 
 

So all three models generate about the same probability estimates for  about -200 < 
netyds < 200, where most of the data reside …  and the Logit approach avoids the 
problems associated with the two LPMs. 
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We can use Stata’s margins command to estimate the marginal impact of changes in 
netyds on the probability that home wins, estimated at the means:2 
 

. margins, dydx(_all) atmeans 
 
Conditional marginal effects                      Number of obs   =       3076 
Model VCE    : OIM 
 
Expression   : Pr(hwins), predict() 
dy/dx w.r.t. : netyds 
at           : netyds          =    12.88329 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      netyds |   .0018875    .000094    20.07   0.000     .0017032    .0020718 
------------------------------------------------------------------------------ 
 

 

Note that the estimated impact coefficient is 0.0019, slightly greater than the .0016 
estimated using the LPM above. 

Just to confirm the lnlikelihood, we can use Solve in Excel to maximize the lnlikelihood 
function.  Here are the results (I’ve included the LPM results as well): 

 

b0 0.55430 b0 0.26215    
b1 0.00159 b1 0.00780    

SSR sumlnLike
640.65 (1,849.75)

hwins netyds prob resid probwin probloss likelihood lnLike
0 103 0.719 (0.719)    0.744     0.256   0.256        (1.362)        
0 130 0.762 (0.762)    0.782     0.218   0.218        (1.522)        
1 -14 0.532 0.468      0.538   0.462     0.538        (0.620)        
1 7 0.565 0.435      0.579   0.421     0.579        (0.547)        
0 -167 0.288 (0.288)    0.261     0.739   0.739        (0.303)        
0 -52 0.471 (0.471)    0.464     0.536   0.536        (0.624)        
1 -41 0.489 0.511      0.486   0.514     0.486        (0.722)        
1 106 0.723 0.277      0.748   0.252     0.748        (0.290)        
1 -63 0.454 0.546      0.443   0.557     0.443        (0.814)        
0 31 0.604 (0.604)    0.623     0.377   0.377        (0.977)        

LPM Logit

 
 

Notice that in the Logit implementation, and consistent with the MLE methodology, the 
likelihood function grabs probwin when the home team wins and probloss when they lose. 

                                                 
2 Note the dydx in the syntax.  This gives us an estimate of the marginal impact, as opposed to an elasticity, 
which would require eyex in the syntax. 
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If you look closely, you’ll see small differences between the estimated Logit coefficients 
here and in the Stata output above.  You’ll also see that the reported lnlikelihood in the 
Stata output is greater (less negative) than what Excel’s Solver routine produced.  This 
should not surprise as we have seen before that Solver’s algorithm sometimes stops short 
of the mark. 

 

Take II:  MLE - Probit 
 

In the probit specification,  

[ ] [ ]0 1 0 1( | ) ,P Hwins netyds netyds prob Z netydsβ β β β= Φ + = ≤ +  

where Z is the standard Normal distribution and (.)Φ  is the Cumulative Distribution 
Function (CDF) for Z.  Here’s what the probit function looks like: 
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Let’s see is using the probit specification of the likelihood function matters: 
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. probit hwins netyds 
 
Iteration 0:   log likelihood =  -2097.596   
Iteration 1:   log likelihood = -1847.0646   
Iteration 2:   log likelihood = -1846.6966   
Iteration 3:   log likelihood = -1846.6965   
 
Probit regression                                 Number of obs   =       3076 
                                                  LR chi2(1)      =     501.80 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1846.6965                       Pseudo R2       =     0.1196 
 
------------------------------------------------------------------------------ 
       hwins |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      netyds |   .0046991    .000224    20.98   0.000     .0042601    .0051381 
       _cons |   .1594993     .02399     6.65   0.000     .1124797    .2065188 
------------------------------------------------------------------------------ 
 

As in the case of the logit function, the signs of the coefficients in the probit tell you 
something directionally, but to estimate impacts, you have to do a bit of a calculation.   
 
But we can look at predicted values for the two MLE approaches: 
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Almost identical predicted values (probit v. logit)!  And as before, we can use the 
margins command to estimate the marginal impact of changes in netyds on the 
probability of a home team victory: 
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. margins, dydx(_all) atmeans 
 
Conditional marginal effects                      Number of obs   =       3076 
Model VCE    : OIM 
 
Expression   : Pr(hwins), predict() 
dy/dx w.r.t. : netyds 
at           : netyds          =    12.88329 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      netyds |   .0018298   .0000868    21.08   0.000     .0016597        .002 
------------------------------------------------------------------------------ 
 

As you can see, and consistent with the figure above, the estimated probit and logit 
marginal impacts are virtually identical. 

 
And for fun:  And since we have the data, here are the results from a few logit models of 
interest (nettposs is net time of possession).  The neutral variable reflects the small 
number of games played on neutral fields (not that those games have officially designated 
home and away teams, despite that fact that neither team is at home): 
 
. esttab, compress 
 
---------------------------------------------------------------------------- 
               (1)        (2)        (3)        (4)        (5)        (6)    
             hwins      hwins      hwins      hwins      hwins      hwins    
---------------------------------------------------------------------------- 
neutral     -0.141     0.0188     -0.211     0.0106     -0.145    0.00177    
           (-0.29)     (0.04)    (-0.48)     (0.02)    (-0.30)     (0.00)    
 
netyds     0.00780***                                                        
           (19.87)                                                           
 
netrush                0.0154***             0.0166***             0.0135*** 
                      (23.22)               (23.90)               (16.38)    
 
netpass                          0.00148*** 0.00413***            0.00228*** 
                                  (4.05)       (9.29)              (4.35)    
  
nettposs                                                 0.110***  0.0457*** 
                                                       (21.00)     (6.50)    
 
_cons        0.263***   0.260***   0.298***   0.249***   0.295***   0.257*** 
            (6.61)     (6.22)     (8.12)     (5.88)     (7.33)     (6.00)    
---------------------------------------------------------------------------- 
N            3076       3076       3076       3076       3076       3076     
---------------------------------------------------------------------------- 
statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 
. corr hwins netyds netrush netpass nettposs 
(obs=3076) 
 
             |    hwins   netyds  netrush  netpass nettposs 
-------------+--------------------------------------------- 
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       hwins |   1.0000 
      netyds |   0.3866   1.0000 
     netrush |   0.4718   0.5564   1.0000 
     netpass |   0.0733   0.7331  -0.1572   1.0000 
    nettposs |   0.4114   0.6911   0.5613   0.3619   1.0000. esttab, compress 
 

For the final model we can use the margins command to calculate the elasticities at the 
mean to get some sense of economic significance:  
 
. margins, eyex(_all) atmeans 
 
Conditional marginal effects                      Number of obs   =       3076 
Model VCE    : OIM 
 
Expression   : Pr(hwins), predict() 
ey/ex w.r.t. : neutral netrush netpass nettposs 
at           : neutral         =     .006827 (mean) 
               netrush         =    8.621586 (mean) 
               netpass         =    4.261704 (mean) 
               nettposs        =    .6085555 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      ey/ex   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     neutral |   4.82e-06    .001437     0.00   0.997    -.0028117    .0028214 
     netrush |   .0463929   .0029388    15.79   0.000     .0406329    .0521529 
     netpass |   .0038756   .0008918     4.35   0.000     .0021277    .0056234 
    nettposs |   .0110883    .001723     6.44   0.000     .0077113    .0144653 
------------------------------------------------------------------------------ 
 

 

Reading Elasticities from Logit Models 
You may recall that for the OLS model with Sample Regression Function 

0
ˆ ˆˆ i ip xβ β= +∑ , the elasticity of the predicted value wrt ix  is 

ˆˆ
ˆ ˆ
i i i

i
i

x xp
p x p

β
ε ∂
= =

∂
, and so 

the ratio of elasticities for two explanatory variables is 
ˆ
ˆ

i i i

j j j

x
x

ε β
ε β

= .  And so if these 

elasticities are being calculated at the means, the relative magnitudes will be the product 

of the ratio of the estimated coefficients and the ratio of the means:  
ˆ
ˆ

i i i

j jj

x
x

ε β
ε β

= .  It turns 

out that this is also the case for the logit model: 

For the logit model, the predicted probability will be defined by 

( ) 1

0
ˆ ˆˆ 1 exp ( )i ip xβ β

−
⎡ ⎤= + − +⎣ ⎦∑ , and so 
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2
0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆexp ( ) exp ( )
ˆ ˆ
i i

i i i i i i i i
i

x xp x p x x p
p x p

ε β β β β β β∂ ⎡ ⎤ ⎡ ⎤= = − + = − +⎣ ⎦ ⎣ ⎦∂ ∑ ∑ . But then 

0

0

ˆ ˆ ˆexp ( )ˆ ˆ
ˆ ˆˆ ˆ ˆexp ( )

i ii i i i i

j j j j ji i

x px x
x xx p

β βε β β
ε β ββ β

⎡ ⎤− +⎣ ⎦= =
⎡ ⎤− +⎣ ⎦

∑
∑

, which is the same as above. 

So in both cases, if you know the means of the explanatory variables, you can easily 
assess relative elasticities by just looking at the product of the estimated coefficients and 
their respective means. 

Just to check to see if this is correct, here are some calculations of relative elasticities in 
the LPM and logit models estimated above: 

 

means logit LPM logit LPM logit LPM
home 0.993  (0.002)  0.0084   (0.002)     0.008  (0.001)     0.015  
netrush 8.622  0.013    0.0023   0.116      0.020  0.046      0.035  
netpass 4.262  0.002    0.0004   0.010      0.002  0.004      0.003  
nettposs 0.609  0.046    0.0090   0.028      0.005  0.011      0.010  

home 1.000      1.000  1.000      1.000  
netrush (66.150)   2.419  (66.153)   2.419  
netpass (5.526)     0.188  (5.526)     0.188  
nettposs (15.811)   0.655  (15.811)   0.655  

home (0.063)     1.526  (0.063)     1.526  
netrush 4.184      3.693  4.184      3.693  
netpass 0.350      0.287  0.350      0.287  
nettposs 1.000      1.000  1.000      1.000  

Ratios wrt nettposs

coeffs β i xbari elasticities

Ratios wrt home

 
 

And the same is true for probit models:  
ˆ
ˆ

i i i

j j j

x
x

ε β
ε β

= . 
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Relative Elasticities:  Who Knew? 
More generally… in fact, this result really is quite general (who knew?): 

Suppose that the Sample Regression Function is defined by:  ( )0
ˆ ˆˆ i iy f xβ β= +∑ , for 

some function (.)f , which is increasing in its argument so that (.) 0f ′ > .  Note that OLS, 
logit and probit are all of this type. 

Then we have: 

• Since ( )0
ˆ ˆ ˆˆ i i i

i

y f x
x

β β β∂ ′= +
∂ ∑  and since (.) 0f ′ > , ( )ˆˆ i

i

sign y sign
x

β
⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
.  So 

the sign of the coefficient tells you the direction of the marginal effect:  if 

( )ˆ [ ]0isign β > < , then increases in ix  will lead to increases [decreases] in ŷ . 

• 
ˆ ˆ

ˆˆ

i i

j

j

y
x

y
x

β
β

∂
∂

=
∂
∂

.  So the ratio of the estimated coefficients tells you the ratio of the 

relative marginal effects, the predicted impacts of changes in the two RHS variables 

• 
ˆ
ˆ

i i i

j j j

x
x

ε β
ε β

= .  So the ratio of the elasticities can be determined by the product of the 

ratio of the estimated coefficients and the ratio of the respective RHS values at which 

those elasticities have been calculated.  (Since  
ˆˆ

()
ˆ ˆ
i i i

i
i

x xy f
y x y

β
ε ∂ ′= =

∂
, 

ˆ
ˆ

i i i

j j j

x
x

ε β
ε β

= .) 

So while we typically need to evaluate things to determine estimated impacts of changes 
in the RHS variables, we can often say a fair amount about signs of effects and relative 
magnitudes by just looking at the estimated parameters. 


